Home Articles FAQs XREF Games Software Instant Books BBS About FOLDOC RFCs Feedback Sitemap
irt.Org

eta conversion

You are here: irt.org | FOLDOC | eta conversion

<theory> In lambda-calculus, the eta conversion rule states

	\ x . f x  <-->  f

provided x does not occur as a free variable in f and f is a function. Left to right is eta reduction, right to left is eta abstraction (or eta expansion).

This conversion is only valid if bottom and \ x . bottom are equivalent in all contexts. They are certainly equivalent when applied to some argument - they both fail to terminate. If we are allowed to force the evaluation of an expression in any other way, e.g. using seq in Miranda or returning a function as the overall result of a program, then bottom and \ x . bottom will not be equivalent.

See also observational equivalence, reduction.

Nearby terms: et « ET++ « eta abstraction « eta conversion » eta expansion » eta reduction » ETB

FOLDOC, Topics, A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V, W, X, Y, Z, ?, ALL

©2018 Martin Webb